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The extent of tumor heterogeneity is an emerging theme that 
researchers are only beginning to understand. How genetic 
and epigenetic heterogeneity affects tumor evolution and 
clinical progression is unknown. The precise nature of the 
environmental factors that influence this heterogeneity is also 
yet to be characterized. Nature Medicine, Nature Biotechnology 
and the Volkswagen Foundation organized a meeting focused 
on identifying the obstacles that need to be overcome to 
advance translational research in and tumor heterogeneity. 
Once these key questions were established, the attendees 
devised potential solutions. Their ideas are presented here.

In many malignancies, molecular and cellular heterogeneity within 
a single tumor, between different sites of neoplasia in a single patient 
and among tumors from different patients confounds researchers’ 
understanding of tumor evolution and their ability to design and 
select effective therapies and curtail treatment resistance1–3.

Researchers are still, however, at the very beginning of understanding  
the full extent of tumor heterogeneity (including the contribution 
of the tumor microenvironment), which types and aspects of tumor 
heterogeneity are relevant in which tumor types and in which clinical 
scenarios, and how to counter and/or exploit tumor heterogeneity for 
therapeutic gain.

To begin to tackle these issues, Nature Medicine, Nature 
Biotechnology and the Volkswagen Foundation invited 20 scientists 
from around the globe for a two-day brainstorming session in the beau-
tifully restored Herrenhausen Palace in Hannover, Germany (Fig. 1).  
Reflecting the variety of expertise needed to tackle the issues men-
tioned above, this group included computational biologists, technol-
ogy developers, cancer biologists, clinicians, industry representatives 
and regulators. The aims were to identify the most important ques-
tions about tumor heterogeneity and map paths to answering them. 
We hope the new collaborations and networks forged at the meeting 
will help make some of these paths a reality.

All in attendance felt that sharing the group’s findings—especially 
the questions identified as most pivotal—with the broader community  

was key. This Perspective aims to do just that and is organized in 
the same manner as the meeting. Whereas the first day involved all 
attendees brainstorming as a single group about the most impor-
tant questions, the second day saw four smaller discussion groups  
(‘cancer evolution’, ‘beyond the genome’, ‘clinical and regulatory’ and 
‘technology’) brainstorming about the answers to four or five select 
questions. At the end of the second day, each group presented their 
conclusions to the larger group. The question-and-answer period that 
resulted proved to be a highlight of the meeting.

Cancer evolution
Many biological aspects of tumor heterogeneity are unknown, but 
the group focused on establishing the basic premises by which we can 
define and study the parameters of tumor evolution.

What is a clone? The term ‘clone’ is used widely in the field, but 
discussion in this group revealed that, perhaps surprisingly, there is no 
consensus about what it indicates; in fact, this question sparked some 
of the most animated discussion at the meeting. In principle, under 
the assumption that tumors arise from a single cell, each tumor can 
be considered a clone. In this scheme, trunk mutations—also called 
founder mutations—that are present in every cell have a cancer cell 
fraction (CCF) of 1. All cells within a tumor with a CCF < 1 can be 
considered subclones, at least in terms of their relative population 
frequency within a given lesion. However, the group recognized that 
even this definition is misleading owing to an illusion of clonality 
within a single biopsy, where a particular mutation can appear clonal 
in one biopsy, with a CCF of 1, but subclonal or absent altogether in 
subsequent tumor sampling (Fig. 2).

What is a driver? The term ‘driver’ typically denotes a genetic 
event associated with tumor initiation or progression. Although it 
might traditionally be viewed as a tumor cell–autonomous alteration 
that promotes tumor proliferation, after discussion we felt it would 
be useful to extend the definition to encompass more of the com-
plex biology of pro-tumorigenic events. In other words, a broader 
biological definition of ‘cancer driver’ would be a cell-autonomous 
or non–cell-autonomous alteration that contributes to tumor evolu-
tion at any stage—including initiation, progression, metastasis and 
resistance to therapy—by promoting a variety of functions including 
proliferation, survival, invasion, or immune evasion. Notably, such 
an alteration could be the result of direct mutational events, including 
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genetic and epigenetic events, or of aberrant signals and mutations in 
one or more of the driver’s regulators and cognate binding partners. 
Accordingly, candidate drivers can be identified through a variety of 
methodologies, including statistical analysis of genetic or epigenetic 
alterations, functional screens and analysis of regulatory networks4. 
As such, they must be confirmed by experimental evidence, including 
preclinical in vitro and in vivo data and clinical data. Complicating 
the matter further, as the role of a driver is constrained by spatial and 
temporal contexts, genetic events can act as drivers at one stage of 
tumorigenesis and as passengers at another stage, and vice versa.

What is the source of heterogeneity in cancer, and what is the 
contribution of heterogeneity to cancer evolution? Heterogeneity in 
cancer is driven by two principle factors: the introduction of genetic 
(or epigenetic) alterations mediated, for example, by genomic instabil-
ity, and the evolutionary selection thereof. Notably, although evolu-
tion is driven by selection of phenotypes according to their relative 
fitness, not all somatic genetic alterations have a recognizable phe-
notypic consequence, and even fewer provide a fitness advantage. 
Selection for phenotypic alterations can favor the outgrowth of cells 
with genetic alterations associated with that phenotype. Therefore, 
in the study of cancer evolution, it is likely that functional screening 
combined with multidimensional phenotyping—measuring signaling,  
epigenetic, transcriptional, metabolic and other alterations in addi-
tion to genetic alterations—will be most informative in revealing the 
sources of the phenotypes driving tumorigenesis. Generating and 
interpreting these data is not trivial, and the unanswered technological  
questions related to these issues are covered below. Regarding the 
contribution of heterogeneity, although heterogeneity can be broadly 
considered to be a trait that allows tumors to overcome evolutionary 
pressures, it can also reflect vulnerabilities that could be exploited 
therapeutically. This makes it even more important to develop tools 
to quantify and model tumor heterogeneity.

How can tumor heterogeneity be modeled in preclinical experi-
ments? One challenge in assessing the dynamic contribution of 
heterogeneity as a trait of tumor progression is the fact that current pre-
clinical tumor models do not recapitulate the condition under which 
heterogeneous tumors arise and evolve in humans5. For example,  
although genetically engineered mouse models (GEMMs) have been 
instrumental in revealing crucial aspects of tumor biology, tumors 
in these animals need to be analyzed when they are relatively small, 
for ethical reasons. The tumors are also homogeneous, driven by a 
small number of genetic alterations, and can be polyclonal in nature, 

in contrast to the monoclonal nature of the majority of human  
cancers. Tumor burden, metastatic potential and tumor longevity are 
also not recapitulated adequately in mouse models. New technologies 
need to be applied to these problems. For example, clustered regularly 
interspersed short palindromic repeat (CRISPR)–CRISPR-associated 
protein 9 (Cas9) genome editing, perhaps used in combination with 
existing GEMMs designed by transgenic or viral expression of tumor-
driving alterations, can help recapitulate the genetic complexity accu-
mulated during human tumor evolution. Patient-derived xenograft 
(PDX) models capture, at least initially, some of the heterogeneity of 
patient samples. However, subclones can be selected for increased 
fitness for growth in the mouse host, which lacks the proper micro-
environmental and immune components that may otherwise influ-
ence subclonal selection. Ongoing efforts to humanize mouse models 
may help incorporate relevant features that shape tumor evolution in 
humans, but differences in the longevity and size of the mouse com-
pared to the human, together with ethical considerations inherent in 
the conduct of mouse experiments, will probably limit application of 
these models to the human disease. Beyond animal models, in vitro 
approaches such as tumor slice cultures can be exploited to recapitu-
late a snapshot of the tumor in its native environment, and organoids 
can be used to model tumorigenesis in human cells. In silico models 
that use multiscale parameters can also create interesting hypoth-
eses that are experimentally testable. However, because no model 
is perfect, many in the group felt that there was no substitute for  
studying tumor evolution in patients.

Beyond the genome
What is the contribution of the epigenome to tumor phenotype 
and clinical outcome? Cell states are defined by the interplay of the 
genome, epigenome, transcriptome and proteome in each tumor cell 
(Fig. 3). Because cell states tend to be self-stabilizing, there are typi-
cally fewer distinct cell states in a tumor than the degree of genetic, 
epigenetic and transcriptional heterogeneity would suggest. Thus, 
even genetically distinct cells may be in a similar cell ‘state’ and hence 
may be susceptible to treatment with the same drugs. On the other 
hand, even genetically identical cells can exist in different cell states, 
owing to epigenetic differences and influence of the microenviron-
ment. But it is time to stop thinking about the genetic and epigenetic 
contributions to cell state separately, because their contributions to 
cell state may be intertwined. Furthermore, epigenetic defects, such as 
promoter CpG island hypermethylation–associated silencing of DNA 
repair genes, are known to cause genetic changes, and translocations 
and mutations can cause epigenetic disruption, which creates mutual 
dependencies between epigenetic and genetic traits.

Researchers must strive to identify relevant cell states in cancer by 
integrating different data sets and, once these are identified, work 
toward therapeutic strategies based on inferred cell states. Epigenetic 
data form only a part of such integrative analysis, but epigenetic mod-
ifications are dynamic and responsive to environmental pressures, 
so they may exert a particularly strong role in the definition of the 
cell state and behavior at any given moment in response to therapy.  
In addition, although epigenetic marks are dynamic, they represent 
the history of the cancer: once a cell has passed through a particular 
cell state, some of these epigenetic marks remain. Moreover, epige-
netic marks can also reflect the potential of the tumor to respond to an 
environmental or therapeutic pressure. Epigenetic marks are therefore 
unique in their ability to provide information about the previous, 
present and potential future states of a cell. They can also provide a 
built-in ‘barcode’ that can measure a tumor’s epigenetic clonality6.

Figure 1  Herrenhausen Palace. Image credit: Eberhard Franke for 
Volkswagen Foundation.
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Because epigenetics provides a different and complementary para-
digm to the analysis of genetic mutations, it may be possible, once 
these states have been defined, to use two or three important epige-
netic markers to infer cell states. Furthermore, as the epigenetic state 
of cancers is more plastic than that of normal development, such 
contributions may be critical to understanding phenotypic changes of 
cancers, such as the epithelial-mesenchymal transition, the capacity 
to disseminate beyond the primary site and drug resistance.

What methods and samples are needed to describe and under-
stand the heterogeneity and influence of the tumor microenviron-
ment? To understand the influence of the microenvironment on cell 
state, researchers need to coordinately characterize DNA sequence, 
epigenome, transcriptome, protein, metabolites and infiltrating 
immune cells in both the tumor and the stroma. Evaluation of data 
from single cells will provide additional insight into heterogene-
ity. Only through integration of such data, using either statistical  
and machine learning approaches or analysis of regulatory and  
signaling models, can we begin to develop a more robust under-
standing of cancer states. As a consequence, there will continue to be 
increasing need for computational biologists. Such technologies are 
discussed further below.

How can the immunogenicity of tumors be increased? 
Immunogenicity depends, in part, on mutations that generate epitopes 
that are not recognized as self by tumor-infiltrating T lymphocytes. 
Therefore, chemotherapy and other genotoxic drugs may improve 
the outcome of immunotherapy interventions, including adoptive  
T cell transfer and immune checkpoint blockade, by generating muta-
tions or modifying the immune microenvironment7. However, it is 
unclear whether subclonal changes in immunogenicity are enough 
to cause the whole tumor to be eradicated by the immune system.  
It is possible that applying radiation therapy before checkpoint block-
ade will result in increased efficacy. Isolated cases have suggested an 
abscopal effect of such treatment, but this has yet to be confirmed in 
a randomized clinical trial8. Recent data suggest that the sustained 
benefit of radiation combined with blockade of cytotoxic T lym-
phocyte–associated protein 4 (CTLA4) may also require blockade 
of programmed death-ligand 1 (PD-L1) to reverse T cell exhaus-
tion and that radiation increases the diversity of the T cell–receptor  
repertoire on intratumoral T cells9. Oncolytivc viruses may also be 
used to increase immunogenicity via the induction of an inflam-
matory response upon local injection of virus, leading to control 
of distant tumors by an increase in tumor-infiltrating cytotoxic  
populations10. For example, Talimogene laherparepvec (T-VEC) has 
shown promising data in phase III clinical trials11.

Clinical and regulatory considerations
What aspects of tumor heterogeneity matter in the clinic, and how 
can they be transformed into diagnostic strategies and treatment 
guidelines including biomarkers of response? There is a dearth of 
information on the degree to which heterogeneity affects the clinical 
management of patients. More work to document the phylogeny and 
generate atlases or road maps for each tumor subtype is needed. This 

will enable more confident identification of trunk mutations for each 
subtype and understanding of the branching properties. One could 
easily assume that between the Cancer Genome Atlas (TCGA), the 
International Cancer Genome Consortium (ICGC) and other consortia  
the tumor genomic data needed to generate road maps for each tumor 
subtype are readily available, but the discussion group felt that none of 
the existing tumor genome repositories are sufficient for this sort of 
analysis. This is because these programs were not designed to address 
the heterogeneity component of cancer, and they use platforms that 
characterize tumors in ‘bulk’, giving results that average across all 
tumor clones. Although bioinformatics tools have been developed to 
tease out the clonal data in these data sets, these inherent limitations 
still exist. What is needed for each subtype is a minimum number of 
primary tumors; the minimum number is likely to vary according  
to the tumor subtype and its inter-patient heterogeneity. Ideally, 
researchers would obtain multiple regions from each tumor to  
capture spatial heterogeneity. To differentiate trunk mutations from 
subclones, each region must be sequenced deeply. Epigenetic and other 
analyses should also be performed. Patients who donate tumors must 
then be followed longitudinally, and their tissue—where practical—
and blood should be collected at regular time points and subjected 
to deep sequencing to track the molecular changes. Clinical annota-
tion of samples and phenotypic correlation is essential at each step. 
This sort of analysis should reveal a finite number of trunk (clonal) 
and tree (subclonal) mutations, which can inform on the signaling 
pathways involved, for each tumor type. Excitingly, some new studies, 
such as TRACERx (Tracking Non-small Cell Lung Cancer Evolution 
through Therapy (Rx); NCT01888601), incorporate several of these 
design elements, albeit in a single tumor type.

How can we maximize the extraction of molecular and clinical 
data that are sharable and likely to lead to benefits for patients? 
The research community needs new consortia composed of academic 
medical centers, industry partners and regulatory agencies. Prior to 
clinical sample collection or data generation, all stakeholders need to 
agree on a minimal set of metadata that need to be collected for each 
tumor in a format that enables sharing; characterization must be sys-
tematic and agnostic to the tumor subtype. Genomic, clinical and any 
other data—once collected—must be added to a suitable repository 
and within an agreed-upon time frame. To maximize the extent of 
effective data sharing and minimize limitations caused by differences 
in consent practices across institutes, municipalities and nations, new 
harmonized consent practices consisting of either universal consent 
forms or an option for patients to waive all restrictions on global shar-
ing of data—even data, such as germline genetic variants, that have 
the potential to reveal the identities of patients and their relatives— 
are needed up front. Patients should be empowered to drive data 
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Figure 2  The clonality of tumor evolution. In tumor evolution, driver 
alterations may result in the formation of the initial tumor clone.  
As further driver alterations occur, these clones then branch off to  
form subclones. Founder mutations that occur in the original tumor  
clone are hard to identify, however, as a mutation at point (1) may be 
considered to be a founder mutation, but further mutations at point (2) 
would have been considered to be in the initial clone had the sample  
at point 1 not been taken.
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sharing—through formation of new patient advocacy organizations, 
for example. Encouragingly, several of these considerations are being 
incorporated into new consortia such as Cancer Core Europe12.

How can tumor heterogeneity be ‘drugged’? Although combi-
nation drug studies are challenging, adaptive trial designs to test 
combinations of targeted therapies with chemotherapies and/or 
immunotherapies based on molecular information extracted from 
individual tumors will be needed. Whether these combinations are 
given simultaneously, at the start of treatment, or sequentially, as new 
resistance or other subclonal mutations appear during longitudinal 
analysis of patient samples obtained through noninvasive methods, 
may vary depending on the road map of each tumor subtype and 
on the therapeutic window of each drug alone and in combination. 
Ideally, we could always target druggable trunk mutations and then 
add drugs to block emerging subclones. To simplify the development 
of combination therapies, drugs showing a high degree of tumor 
selectivity (for example, those targeting a mutant but not wild-type 
version of a tyrosine kinase) may be prioritized. To minimize legal 
and financial hurdles that prevent testing of combinations of differ-
ent drugs from different companies, ‘honest broker’ approaches that 
negotiate these issues with companies (along the lines of the Cancer 
Research Institute Clinical Accelerator, Cancer Core Europe and the 
US National Cancer Institute Cancer Therapy Evaluation Program) 
should be proactively incorporated into the consortia mentioned 
above. It is likely that tumor heterogeneity in the form of increased 
somatic mutational diversity represents, in some cases, an Achilles’ 
heel for tumors owing to the increased likelihood of tumor neo- 
antigens being recognized as non-self by T cells.

In addition, we need to increase researchers’ ability to dissect the 
specific molecular mechanisms that contribute to drug synergy and 
complementarity in combination therapy. For instance, a recent 
project in the DREAM Challenge, an open science effort by a non-
profit community including researchers from academic institutions 
and companies, collected analyses from 31 labs around the world on 
the prediction of drug synergy in human lymphoma13. The study 
revealed that, despite a complete lack of prior literature on drug 
synergy prediction, several labs can now effectively predict syner-
gistic combinations that are experimentally validated. Yet most of 
the approaches are still relatively naïve and will benefit from a more 
systematic and concerted effort to characterize drug mechanisms of 
action and activity at the molecular level through predictive and com-
putational approaches.

Why do clinical trials fail, and what is the clinical trial of the 
future? The ideal clinical trial will incorporate patients whose tumors 
have been selected as likely to respond on the basis of molecular markers  
that have been well validated in preclinical studies. However, trials in 
which a single agent is tested in a cohort with a matched biomarker 
do not provide information about the impact of heterogeneity or the 
longitudinal evolution of clonal or subclonal cells. The reason for 
lack of response, in a cohort or at the individual level, requires under-
standing of the spatial and longitudinal heterogeneity of the tumor. 
The ideal clinical trial will respond—in real time—to molecular  

changes, revealed by frequent characterization of tumor evolution, in 
response to therapy. This characterization will require material from 
the primary tumor or metastases (not always accessible) or could be 
achieved by studying nucleic acids or cells in the blood, as emerg-
ing data suggest liquid biopsies are feasible14–17. Imaging approaches 
may not have sufficient resolution, information content or speed to 
reveal molecular changes indicative of emerging resistance to therapy, 
although new imaging modalities such as 13C-based magnetic reso-
nance spectroscopy might provide metabolic readouts of response18. 
Broad changes in clinical practice and regulatory procedures may be 
needed. For example, are we ready to conduct trials in which treat-
ment is adapted on the basis of changes in circulating tumor DNA 
as an indicator of progression? Similarly, if a resistance mutation is 
detected in a patient’s circulating tumor DNA but imaging analysis 
shows that the tumor is stable or shrinking, would a clinician be com-
fortable switching to a different targeted therapy? Although changes 
to include targeted therapies have been adopted in the treatment of 
some malignancies, including chronic myeloid leukemia, broader 
changes may be needed.

Technology
Which sources of heterogeneity can be measured, and which are 
difficult to assess with regard to DNA? High-throughput DNA 
sequencing of bulk samples is the most common of all the technolo-
gies used for the molecular characterization of tumor heterogeneity. 
Single-nucleotide and structural variations with a high allele fre-
quency can be robustly detected at the sequencing depth routinely 
achieved in experimental and clinical settings. For comprehensive 
cataloging of mutations that occur with a frequency of less than 1–2%, 
the sequencing depth required for robust variant calling (400–500×) 
is still prohibitive for larger-scale studies, but with the continuing 
development in sequencing technology, this issue is likely to be solved 
in the near future. A major advantage of DNA sequencing is that it is 
relatively robust to sample treatment, and high-quality data can be 
obtained from most specimens, although accurate enumeration of sub-
clonal tumor heterogeneity in formalin-fixed and paraffin-embedded  
(FFPE) archival samples can be challenging.

In the context of heterogeneity, the more recent development of 
single-cell genome sequencing is very exciting, as it enables not only 
estimation of the frequency of individual mutant alleles in a cancer 
sample but also determination of co-occurring or mutually exclusive 

Cancer cell state
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Figure 3  Influences on cancer cell state. The cancer cell state is 
representative of the genetic and epigenetic components as well as  
the signaling environment, which collectively determine which genes 
are expressed by the cell. These properties may be altered by subclonal 
evolution and can influence the initiation, progression and drug response 
of the tumor, affecting both the bulk tumor and the single-cell state.  
The gray arrows show the timescales of these processes and the  
factors that might influence cell state on each timescale are indicated.
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alterations. By sequencing and comparing multiple single cells, it is 
possible to reconstruct cell lineages and phylogenies using muta-
tions as stable markers of evolution. Single-cell genome sequencing 
also enables study of intratumor heterogeneity in rare subpopula-
tions such as circulating or disseminated tumor cells. Currently,  
the main limitations for single-cell genome sequencing are its rela-
tively low throughput and its high cost, partial genome coverage and 
uniformity, in addition to technical problems, such as allelic-dropout 
errors and false positives introduced by whole-genome amplifica-
tion methods. The throughput and cost issues can be addressed by  
performing genome sequencing on targeted regions such as the 
exome or cancer gene panels in single cells. Algorithms for calling 
single-nucleotide variants, insertions and deletions, copy-number 
profiles and structural variations have not yet been developed for 
single-cell data, but they are desperately needed owing to the inherent  
differences in the data.

Regarding DNA. As with DNA, sequencing is now the method of 
choice for investigating the RNA composition of tumors. In contrast 
to DNA data, it is difficult to learn much about the heterogeneity of 
bulk samples from RNA sequencing (RNA-seq) data, beyond what 
can be gathered by sequencing samples from different regions of 
the tumor. The tumor microenvironment may represent as much as 
90% of some tumor samples and contributes proportionally to the 
RNA pool, which affects measures of heterogeneity and the resulting  
transcriptional profile. Computational deconvolution of different 
expression components in a sample can distinguish between cells 
from different lineages but have limited applicability in samples with 
low transcriptional diversity19,20.

Single-cell RNA-seq is a robust technology21 that, with the emerg-
ing Drop-seq, in which individual cells are separated into nanoliter-
sized aqueous droplets and sequenced, and microwell sequencing22–24 
methods, can analyze tens of thousands of cells simultaneously in a 
cost-effective and efficient manner. That said, sensitivity for lowly 
expressed genes still needs to be increased for all RNA-seq protocols 
and better methods for controlling amplification biases and technical 
noise are needed. Optimized analytic tools for single-cell RNA-seq 
methods are also being developed, but a thorough comparative bench-
marking of these tools is needed. For single-cell methods, obtaining 
full-length RNA sequences or information about RNA modifica-
tions remains challenging. Furthermore, the current throughput of  
next-generation sequencing platforms is insufficient to profile tens 
of thousands of single cells.

As the transcriptome is highly dynamic, sample handling is a criti-
cal hurdle in the acquisition of quality transcriptomes. Issues to con-
sider include how quickly the sample is processed or frozen after its 
extraction from the patient and, even more importantly, the protocol 
by which the cells are disassociated from solid tumors. The availability 
of fresh or rapidly frozen samples is essential; FPPE samples can be 
processed for RNA-seq but are unlikely to provide a reasonable picture 
of cancer cell states, and their often fragmented nature will preclude 
discerning completely phased, or linked, genetic information.

Optimizing analysis pipelines for variant calling has been an inten-
sive focus of research in recent years. A low false-positive or false-
negative mutation detection rate has little effect in cohort studies, 
such as those by the TCGA or ICGC, but may lead to artifactual 
differences between related mutation profiles and cause critical mis-
interpretations of study results. What is needed is an independent 
systematic evaluation of the many pipelines currently used for muta-
tion calling in cancer samples, as has been started for the baseline  
‘normal’ genome with the Genomes in a Bottle Consortium. A valuable  

community resource would be the availability of benchmarking  
reference specimens with defined clonal composition as assessed by 
a gold standard. We expect that results from comparative evalua-
tion, such as the ICGC-TCGA DREAM Genomic Mutation Calling 
Challenge, a consortium set up to improve mutation calling within 
cancer genome sequencing data, will provide a good estimate of 
the relative performance of methods for processing whole-genome 
data sets, but further investigations are likely to be needed to bench-
mark tools for calling of subclonal mutations and the estimation of 
allele frequencies. Conservative approaches, such as >60× coverage 
thresholds and mutation filtering using multiple normal (germline)  
samples, are recommended when determining the degree of heteroge-
neity between tumor samples. A relatively uncharted area is the devel-
opment of metrics that quantify similarity and difference between 
samples from the same clonal origin, such as multiple biopsies from 
the same tumor, pre- and post-treatment samples from the same 
patient or tumor samples and (xenotransplanted) model systems.

Regarding protein. Techniques for investigation of proteins lag 
behind those for nucleic acid analysis, especially in terms of sensitivity  
and comprehensiveness. It is possible to get a complete picture of  
the protein content of a sample using mass spectrometry–based  
proteomics, but at the moment the relatively large amount of material  
needed makes proteome-wide experiments on cancer samples unfea-
sible in most instances. Antibody-body based techniques are the 
method of choice when sample material is limited, but they are limited 
by throughput and the availability of high-quality antibodies. At the 
single-cell level, technologies such as fluorescence-activated cell sort-
ing (FACS) or mass cytometry (CyTOF) allow the investigation of up 
to about 17 proteins per cell (FACS) or 45 proteins per cell (CyTOF) 
with very high throughput. Future development of CyTOF technology 
might increase the number of proteins that can be monitored, but no 
technology that can provide a truly comprehensive protein atlas for 
single cells is on the horizon.

Protein content is less dynamic than the transcriptome or the epige-
nome, which reduces the requirement for sample freshness. However, 
the phosphoproteome, which is critical for the understanding of 
cancer signaling, is even more sensitive and rapidly changing than 
the transcriptome. FFPE samples can be processed for proteomics  
experiments but not for CyTOF or FACS.

As discussed above in the section ‘Beyond the genome’, the epige-
netic features of chromatin, including histone modification, DNA 
base modifications (such as methylation and hydroxymethylation) 
and DNA accessibility, provide information about both the cell state 
and the evolutionary history of a tumor. Robust technologies have 
been developed to provide genome-wide maps of most epigenetic 
marks. For histone marks, some methods of chromatin immunopre-
cipitation combined with next-generation sequencing (ChIP-seq) can 
be reliably applied to very small samples (1,000 cells or fewer). Several 
techniques are routinely used to assess methylation levels. The most 
comprehensive picture can be obtained from whole-genome bisulfite 
sequencing (WGBS), but precipitation techniques (methylated-DNA 
immunoprecipitation sequencing and methylated–DNA-binding 
domain sequencing) or reduced-representation bisulfite sequencing  
(RRBS) are also in use. WGBS can be applied to small samples, 
but the DNA-damaging effects of bisulfite treatment limit genome 
coverage. The development of alternative chemistries that are less 
harsh will help reduce experimental artifacts. Illumina’s Infinium 
HumanMethylation450 BeadChip platform provides an array-like 
alternative that has been found to provide acceptable DNA methylation  
profiles, even with FFPE samples. Assays for the various oxidized 
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forms of 5-methylcytosine have been developed but not thoroughly 
validated in terms of reproducibility and sensitivity. DNA acces-
sibility and nucleosome positioning can also be readily measured, 
most commonly by DNAase I–based assays and, more recently, by  
transposase-accessible chromatin using sequencing (ATAC-seq) for 
bulk and single-cell samples. As there are a large number of epigenetic 
modifications of interest in any given sample, a big need in the field is 
the development of multiplexing strategies that allow measurement of 
many marks at the same time in the same sample, although nascent 
methods to examine multiple chromatin marks within a single stretch 
of chromatin exist25.

Some estimation of cellular heterogeneity can be obtained from 
bulk experiments in the case of DNA methylation, but single-cell 
assays, although limited by throughput, would provide advantages 
in terms of capturing the amount of heterogeneity and determining 
the degree of co-occurrence and phased states of epialleles. Single-cell 
assays for histone marks have yet to be developed, but given the rapid 
development in the field, single-cell ChIP-seq assays can be expected 
in the near future.

The epigenome, like the transcriptome, is highly dynamic and  
sensitive to changes in the environment. As such, fresh or rapidly  
frozen samples are essential for its study. Finally, a wide range of  
RNA base modifications, collectively called the epitranscriptome, have 
been implicated in translation control, RNA splicing defects and many 
cancer types26. These dynamic marks are also likely to possess some 
degree of heterogeneity, although single-cell methods are needed to 
tease out such varied RNA states within and between cells from within 
a tumor.

A complete picture of a cell state will often require measurement 
of different parameters in the same cell. Although it is usually pos-
sible to perform multiple assays on a bulk sample, only in some cases 
is this possible with single-cell measurements25,27. Further develop-
ment of multimodel measurement methods will aid understanding 
of the relationship between point mutations and gene expression and 
between methylation changes and changes in the expression of onco-
genes, for example.

How can we assess spatial organization of tumors? Traditionally, 
when a spatial resolution higher than what can be achieved by mul-
tiple biopsies is desired, assessment of spatial heterogeneity in tis-
sue samples has been limited to microscopy-based methods. For  
example, immunofluorescence and fluorescence in situ hybridiza-
tion can localize proteins, RNAs and DNA mutations in tissue slices 
with high sensitivity, potentially down to the single-molecule level. In  
practice, both methods suffer from difficulties in quantifying 
expression levels and in comparing results within and between sam-
ples, owing to variable background and target accessibility. These  
techniques are also very low throughput, and only a handful of 
mRNAs or proteins can be imaged simultaneously with standard  
technology. Imaging site-specific epigenetic modifications is currently 
not routinely done, although at least one method has been developed 
to visualize histone modifications in fixed tissues28,29.

Excitingly, recent years have seen the emergence of new technolo-
gies that promise to revolutionize our ability to assess the spatial het-
erogeneity of protein and RNA expression. For proteins, CyTOF has 
been developed into an imaging tool that can image the localization 
of up to 32 proteins at present (and potentially up to 100)30 with 
subcellular resolution31. For RNA, in situ sequencing methods32–34 
can provide information about the RNA content of individual cells in 
fixed tissue. The practical applications of these technologies are still 
in their infancy, and a thorough benchmarking of reproducibility and 

sensitivity has yet to be done. Throughput of these new technologies 
still seems to be severely limited at the moment.

With these new technologies on the rise, the critical bottleneck 
has become the development of computational methods to analyze 
data from each technology, integrate information from different  
technologies and connect these data to prognostic and actionable 
clinical information.

What noninvasive or minimally invasive technologies can be used 
to obtain information about tumor heterogeneity? Currently, the 
blood is the best source of information about the molecular makeup 
of a cancer that can be obtained without biopsying the tumor itself. 
Cell-free DNA and circulating tumor cells are especially rich sources 
of information. Few high-quality studies have been done to assess how 
well data obtained from these blood-borne biomarkers reflects the 
tumor itself, although a number of recent studies have highlighted the 
power of this approach for the noninvasive characterization of tumor 
heterogeneity in carcinomas of the colon, breast and lung14–17. It is 
also unclear whether primary tumors or metastases contribute more 
to the pool of circulating cancer material. It seems clear, however, that 
even if circulating material is found to faithfully reflect the tumor 
itself, there is still a need for more efficient ways of isolating the cells 
and nucleic acids from the blood and for data analysis tools that can 
more faithfully reconstruct the parent tumor.

Although current in vivo imaging technologies are unable to pro-
vide many insights into intratumor heterogeneity in patients owing to 
resolution and labeling issues, some work indicates that heterogeneity 
of radiographic imaging, including positron emission tomography 
(PET) and magnetic resonance imaging (MRI), is clinically predictive 
of response35,36. Image-guided biopsies may also make an important 
contribution to the analysis of genome-based intratumoral heteroge-
neity by providing the spatial context to relate different regions.

How should methods for assessing heterogeneity be bench-
marked and validated? Validation of the accuracy and robustness 
of the assays discussed above will require the development of gold-
standard samples that are readily available and can be recreated in 
reproducible manner by individual labs. For some data types, such 
as DNA mutations, simple mixtures of cell lines will be sufficient, but 
others, such as epigenomic or RNA expression data, are too sensitive 
to environmental changes and will require test samples with more 
intrinsic control of biological variation, such as ‘spike-in’ standards. 
For each assay, a set of quality-control metrics that can be used to 
assess the performance of improved methods and that investigators 
can apply to their own experiments will have to be agreed upon.

One should also keep in mind that the degrees of accuracy needed 
for understanding biology and for informing clinical decision-making 
may differ and should be investigated separately.

How can we use these technologies to assess the clinical impact of 
heterogeneity? Despite the wealth of experimental data and compu-
tational analyses performed, we still lack a clear understanding of the 
parameters that will ultimately need to be measured and integrated 
to assess the impact of tumor heterogeneity on clinical outcomes, but 
it seems that current knowledge can be applied to envision a more  
integrated experimental pipeline to systematically test different 
hypotheses. At the outset, it seems clear that a critical point will be 
to improve sample handling from collection, through processing and 
into proper allocation towards different assays.

Other questions need to be carefully considered in design of 
experiments that aim to study the clinical impact of tumor hetero-
geneity and evolution. First, which tumor type should be chosen? 
Tumors need to be relatively large (to provide enough material for the  
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various assays) and should be readily resectable and progress quickly 
enough to make a reasonable timeline possible. Second, when and 
how many times should a tumor be sampled? Third, which parts of 
the tumor should be analyzed, and should analysis information about 
its metastatic sites?

Ideally, a coordinated effort to produce this type of sample would 
generate gold-standard data sets from a large number of patients with 
well-annotated clinical histories and comprehensive tumor imaging. 
Each patient’s tumor could then be analyzed with a wide array of 
experimental techniques that provide information about degrees 
of heterogeneity. The core group of methods should include multi-
focal bulk and single-cell DNA sequencing, single-cell RNA-seq,  
multifocal bulk and single-cell mapping of epigenetic marks and  
single-cell CyTOF-based analysis of candidate marker proteins.  
Both tumor and microenvironment, including tumor-infiltrating 
leukocytes, would ideally be assayed. These data could be comple-
mented with data from other assays to measure spatial heterogeneity 
or investigate cell-free DNA or circulating tumor cells. These assays 
would provide detailed protein, genome and RNA maps, but to recon-
struct patient-specific regulatory networks, algorithms will need to 
be substantially improved.

This wealth of data should then be made available to the research 
community to develop methods that analyze and integrate the infor-
mation provided by different assays to predict disease outcome and 
therapeutic success, so that researchers can continue to gain insight 
into the importance and impact of cellular heterogeneity.

Closing remarks
One take-home message from this meeting was that the phenomenon 
of tumor heterogeneity is likely to influence—for some time to come—
all aspects of cancer research, including how tumor biology is per-
ceived, how techniques to study tumors are developed and how patients 
are treated. This conference was unique in its goal of identifying  
questions rather than answers, and we hope that this description of 
‘known unknowns’ identified by this small group of experts sparks 
research and collaboration in the community at large.
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